Сохранение массы
Сохранение массы
При рассмотрении импульса мы имели дело с тремя величинами: скоростью, массой и их произведением, т. е. самим импульсом.
С точки зрения сохранения мы рассмотрели две из них: импульс, который сохраняется, и скорость, которая не сохраняется. А что происходит с третьей величиной — массой? Если наблюдать некоторые явления эпизодически, покажется, что существуют явные доказательства несохранения массы. Дерево сгорает, оставляя после себя пепел, имеющий гораздо меньшую массу. Большая часть массы дерева как бы исчезает. Если полностью сжечь свечу, масса ее тоже исчезнет. С другой стороны, если кусок железа полностью съедает ржавчина, образовавшаяся масса значительно больше первоначальной. Кажется, что масса возникла из ничего. Но масса — неотъемлемое свойство вещества, иметь одно без другого нельзя, следовательно, процессы сгорания или ржавления можно считать доказательством исчезновения или появления вещества.
Однако закон сохранения массы нельзя проверить в открытой системе. Мы обнаружили это, когда пытались объяснить поведение бильярдного шара, отскакивающего от борта, не принимая в расчет изменение импульса самого стола.
Ясно, что сгоревшее бревно, свеча или съеденное ржавчиной железо представляют собой открытую систему, так как на них сильно воздействует окружающая среда. По мере сгорания бревна или свечи возникают газы и пары, которые смешиваются с атмосферой Земли. Конечно, следует также рассмотреть их массу, прежде чем сделать какие-нибудь выводы о сохранении массы. Процесс ржавления гораздо более тонкий. По-видимому, некоторая часть воздуха соединяется в процессе ржавления с железом, следовательно, надо учесть массу воздуха прежде чем решить, сохраняется масса или нет.
Вплоть до XVIII столетия химики обычно неправильно оценивали материальную природу воздуха и газов. Они считали, что газы не имеют массы или она очень мала и ею можно пренебречь. Тем не менее XVIII век стал свидетелем грандиозных работ по исследованию свойств газов. Стало ясно, что при рассмотрении некоторых явлений нельзя не учитывать газы. Перелом наступил с появлением теории французского химика Антуана Лавуазье, который описал свои выводы в учебнике химии, опубликованном в 1789 году [4].
Химические реакции сгорания и ржавления Лавуазье провел в закрытых сосудах, из которых не испарялись газы и в которые не проникал воздух. Масса не могла ни проникнуть в систему, ни выйти из системы, которая была таким образом замкнута. Лавуазье взвесил сосуд с eё содержимым до и после реакции. При той точности, которую обеспечивали измерительные приборы, он не обнаружил изменения массы. Его результаты подтвердили другие экспериментаторы, которые использовали все более и более точные методы измерения массы. Измерения, сделанные в самом начале XX столетия, показали, что масса остается постоянной, по крайней мере с точностью до стомиллионной.
Итак, Лавуазье установил закон сохранения массы или, как его иногда называют, закон сохранения вещества.
Масса отличается от других «сохраняющихся» величин одним важным свойством. Импульс и момент количества движения — векторные величины, т. е. величины, имеющие направление. Импульс бывает направлен вперед или назад; момент количества движения — по часовой или против часовой стрелки. Это означает, что импульс одной части системы скомпенсируется противоположным импульсом другой части системы. Поэтому импульс в одной части системы получают путем создания противоположного импульса в другой ее части. Следовательно, при сохранении импульса или момента количества движения мы должны иметь дело с суммарными величинами, полученными путем алгебраического сложения всех положительных и отрицательных значений.
Однако масса — скалярная величина, т. е. величина, которая характеризует количество, но не имеет направления. Одно тело бывает тяжелее другого, но нет такого понятия положительной и отрицательной массы, которые могут погасить друг друга. Чтобы получить общую массу системы, надо только сложить массы частей, составляющих ее, не заботясь об их знаке. Точнее говорить не о суммарной, а о полной массе.
Закон сохранения массы формулируют следующим образом: полная масса замкнутой системы остается постоянной.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Глава 4 СОХРАНЕНИЕ ЭНЕРГИИ
Глава 4 СОХРАНЕНИЕ ЭНЕРГИИ § 1. Что такое анергия?§ 2. Потенциальная энергия тяготения§ 3. Кинетическая энергия§ 4. Прочие формы энергии§ 1. Что такое энергия?С этой главы, покончив с общим описанием природы вещей, мы начнем подробное изучение различных физических вопросов.
Сохранение импульса
Сохранение импульса Теперь вы, вероятно, начнете подозревать, что «сохранение суммарной скорости» будет иметь место при всех условиях. Подождите — мы еще не рассмотрели всевозможные ситуации.Предположим, например, что шар ударяет о борт бильярдного стола и отскакивает
Сохранение момента количества движения
Сохранение момента количества движения Движение не обязательно должно представлять собой изменение положения. Если бильярдный шар быстро вращается, не трогаясь с места, было бы несправедливо считать такой шар неподвижным. Кроме того, шар может двигаться по прямой линии
Сохранение энергии
Сохранение энергии Скорость входит не только в импульс. Движущееся пушечное ядро разобьет каменную стену, хотя такое же ядро, но неподвижное ничего не сделает со стенкой, даже соприкасаясь с ней. Движущееся пушечное ядро совершает работу, а идентичное с ним во всем, кроме
Глава 4. Связь массы и энергии
Глава 4. Связь массы и энергии Несохранение массы Новое представление о строении атома укрепило уверенность физиков в том, что законы сохранения применимы не только к окружающему нас повседневному миру, но и к тому огромному миру, который изучают астрономы. Но
Несохранение массы
Несохранение массы Новое представление о строении атома укрепило уверенность физиков в том, что законы сохранения применимы не только к окружающему нас повседневному миру, но и к тому огромному миру, который изучают астрономы. Но справедливы ли законы сохранения в
Сохранение электрического заряда
Сохранение электрического заряда В атомном мире существуют, насколько нам известно, три важных закона сохранения, которые выполняются как в повседневной жизни, так и в огромной окружающей нас Вселенной.К ним относятся законы сохранения импульса, сохранения момента
Сохранение барионного числа
Сохранение барионного числа До сих пор мы не ответили на вопрос: почему протон стабилен? Теперь мы можем к этому вопросу добавить другой: почему стабилен антипротон? Совершенно неуместно говорить о том, что протон имеет наименьшую массу, с которой связан положительный
Сохранение четности
Сохранение четности До сих пор, рассказывая о нейтрино, мы использовали семь законов сохранения: 1) импульса, 2) момента количества движения, 3) энергии, 4) электрического заряда, 5) барионного числа, 6) электронного числа, 7) мюонного числа.Это не все законы сохранения,
СОХРАНЕНИЕ МАССЫ И ЭНЕРГИИ
СОХРАНЕНИЕ МАССЫ И ЭНЕРГИИ 1.2. Существуют два принципа, ставшие краеугольными камнями здания современной науки. Первый принцип материя не создается и не уничтожается и лишь переходит из одного вида в другой был высказан в XVIII веке и знаком каждому изучающему химию; он
ЭКВИВАЛЕНТНОСТЬ МАССЫ И ЭНЕРГИИ
ЭКВИВАЛЕНТНОСТЬ МАССЫ И ЭНЕРГИИ 1.4. Один из выводов, полученных на довольно ранней стадии развития теории относительности, состоял в том, что инертная масса движущегося тела увеличивается с возрастанием его скорости. Это означало эквивалентность изменения энергии
Закон сохранения массы
Закон сохранения массы Если растворить сахар в воде, то масса раствора будет строго равна сумме масс сахара и воды.Этот и бесчисленное количество подобных опытов показывают, что масса тела есть неизменное свойство. При любом дроблении и при растворении масса остается
3.9. Массы и плотности астероидов
3.9. Массы и плотности астероидов Поскольку энергия, выделяющаяся при столкновении тела с Землей, пропорциональна массе тела, получение оценки массы является необходимым элементом оценивания угрозы со стороны каждого потенциально опасного тела.Масса m, объем v и средняя
Эпилог Конструкция массы
Эпилог Конструкция массы Из чего сделан мир?В середине 1930-х мы могли бы сказать, что вся материальная субстанция в мире состоит из химических элементов, а каждый элемент состоит из атомов. Каждый атом, в свою очередь, состоит из ядра, а ядро – из разного числа положительно