Принцип неопределенности и законы сохранения
Принцип неопределенности и законы сохранения
В 1930 году на конгрессе физиков в Брюсселе Эйнштейн пытался доказать ошибочность принципа неопределенности. Сделать это ему не удалось. Соображения которые он привел, чтобы доказать несостоятельность принципа неопределенности, как показал датский физик Нильс Бор, были ошибочны, и Эйнштейн, так сказать, высек самого себя.
В процессе дискуссии Эйнштейн показал, что, если принцип неопределенности верен, его можно выразить через неопределенность энергии ?е, умноженную на неопределенность времени ?t, по аналогии с соотношением Гейзенберга, т. е.
?е?t ? 10-27.
Согласно эйнштейновской версии принципа неопределенности, чем точнее мы определяем энергию системы, тем менее точно знаем момент времени, в который энергия действительно имеет это определенное значение, и наоборот.
В обычных условиях энергию системы определяют в течение достаточно длинного отрезка времени, поэтому можно в принципе определить ее с большой точностью и убедиться, что закон сохранения энергии выполняется с такой же большой точностью.
А если необходимо определить энергию системы в течение, скажем, одной триллион-триллионной доли секунды? В этом случае время нужно определить по крайней мере с такой же степенью точности, следовательно, неопределенность энергии будет очень большой. В этом случае нельзя сказать, имеет ли система такую энергию, которую она «должна» иметь согласно закону сохранения энергии, так как из-за неточности измерения энергия системы может быть значительно больше или значительно меньше истинного значения.
Предположим, школьнику запрещается в любое время неучтиво относиться к строгому учителю под страхом суровой порки. Есть ли у учителя основания считать, что мальчишка не высовывает язык каждый раз, когда он поворачивается к нему спиной? Учитель может обернуться и не увидеть высунутого языка, так как ученик спрячет язык быстрее, чем учитель повернется. Неважно, поймает учитель мальчишку или нет. Если мальчишка высунет свой язык, он нарушит правила вне зависимости от того, будет ли он пойман или нет. Значит, практически правило для школьника означает не «Быть вежливым», а «Никогда не быть пойманным за невежливость». Если учитель не заметит высунутого языка, у него не будет основания наказать мальчишку.
Аналогично закон сохранения энергии требует, чтобы система имела определенное фиксированное значение энергии вне зависимости от того, как ее измеряют. А если энергию системы нельзя измерить точно, нельзя с чистой совестью утверждать, что ее величина должна быть именно такой.
Короче говоря, закон сохранения энергии мы должны формулировать следующим образом: «Полная энергия замкнутой системы остается постоянной в пределах принципа неопределенности». При этой, более разумной формулировке закон сохранения энергии в его абсолютном смысле может «нарушаться» в течение короткого промежутка времени, и чем он короче, тем сильнее его можно нарушить.
Эту довольно гибкую версию закона сохранения энергии использовали при детальном рассмотрении ядерного поля, для объяснения существования атомных ядер элементов тяжелее водорода. В начале 30-х годов над этой проблемой работал японский физик Хидэки Юкава, опубликовавший свои результаты в 1935 году. Он предположил, что ядерное поле создает сильное притяжение с помощью обменной частицы. Самим своим существованием эта частица нарушает старую, доквантовую формулировку закона сохранения энергии. Значит, она существует только в течение очень короткого времени, дозволенного ей принципом неопределенности.
Предположим, что нейтрон или протон испускает частицу, которой в обычных условиях не хватает энергии, чтобы вылететь из нейтрона или протона. Такая частица должна быстро поглотиться за время, определяемое принципом неопределенности. Эту частицу, называемую виртуальной, которая испускается и тут же поглощается, нельзя зарегистрировать никаким прибором.
Если виртуальная частица возникает внутри ядра и движется со скоростью света, она проходит расстояние от одного нуклона до другого и обратно приблизительно за 5·10-24 сек. Если этот промежуток времени рассматривать как неопределенность во времени ?t, из эйнштейновской версии принципа неопределенности можно подсчитать неопределенность энергии протона ?е, испускающего виртуальную частицу. Эта величина равна приблизительно 0,0002 эрг или 125 Мэв, что эквивалентно массе приблизительно равной 250 массам электрона.
Другими словами, если бы протон излучал частицу в 250 раз тяжелее электрона, ее нельзя было бы зарегистрировать за время, меньшее чем 5·10-24 сек. В течение этого промежутка времени протон может нарушить закон сохранения энергии в пределах 250 электронных масс, но в течение этого времени частица способна долететь до следующего нуклона и вернуться обратно. Если бы виртуальная частица была значительно легче, ее нельзя было бы зарегистрировать в течение значительно большего периода времени, и она вылетела бы за пределы ядра на значительное расстояние. Тогда ядерное поле проявилось бы вне ядра, чего на самом деле не наблюдается. С другой стороны, если бы виртуальная частица была более чем в 250 раз тяжелее электрона, у нее не хватило бы времени долететь до соседнего нуклона и нуклоны не могли бы удерживаться вместе в ядре.
Так, в 1935 году Юкава предсказал, что ядро устойчиво благодаря ядерному полю, которое существует за счет непрерывного испускания и поглощения частиц с массой, приблизительно в 250 раз большей массы электрона. А принцип неопределенности объяснил, почему ядерное поле имеет такой маленький радиус действия.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Глава 10 ЗАКОН СОХРАНЕНИЯ ИМПУЛЬСА
Глава 10 ЗАКОН СОХРАНЕНИЯ ИМПУЛЬСА § 1. Третий закон Ньютона§ 2. Закон сохранения импульса§3. Импульс все-таки сохраняется§ 4. Импульс и энергия§ 5. Релятивистский импульс§ 1. Третий закон НьютонаВторой закон Ньютона, который связывает ускорение любого тела с действующей на
Лекция 3. Великие законы сохранения
Лекция 3. Великие законы сохранения Изучая физику, вы обнаруживаете, что существует огромное количество сложных и очень точных законов - законы гравитации, электричества и магнетизма,законы ядерных взаимодействий и т.д. Но все это многообразие отдельных законов
Закон сохранения массы и энергии
Закон сохранения массы и энергии В ядерных реакциях изменения энергии столь значительны, что эквивалентностью массы и энергии уже нельзя пренебречь. Если следить за изменением одной только массы, кажется, что закон сохранения нарушается.Чтобы убедиться в этом,
Принцип неопределенности
Принцип неопределенности До сих пор мы предполагали, что законы сохранения выполняются строго. Мы не сомневались в этом, ибо могли доказать, что если, скажем, энергия или импульс возникли или исчезли даже в очень малых количествах, имели место явления, которые в
ИСТОРИЯ ПРИНЦИПОВ СОХРАНЕНИЯ
ИСТОРИЯ ПРИНЦИПОВ СОХРАНЕНИЯ Современный историк механики не случайно начинает свою общую характеристику развития механики в XVII в. со следующего положения: «От ожерелья, надетого на наклонную плоскость, до первой подлинно математической физики мировой системы, через
5. Принципы неопределенности
5. Принципы неопределенности Мои попытки связаться со Стивеном после Испании были безрезультатны. Его мать сказала, что он уже вернулся в Кембридж и что дела с его здоровьем очень плохи. Приближалась осень, и я готовилась к отъезду из дома; меня ожидал новый жизненный этап
Развитие представлений о законах сохранения
Развитие представлений о законах сохранения Идея сохранения появилась еще в Древней Греции в виде догадки о наличии неизменных субстанций в мире, где все меняется. Древние материалисты пришли к выводу, что материя как неуничтожима, так и нетворима, и является основой
Законы сохранения в СТО
Законы сохранения в СТО Как выводились законы сохранения и строились сохраняющиеся величины в дорелятивистской механике и электродинамике до появления СТО? Преобразованиями в уравнениях движения частиц, механических систем, уравнений поля выделялись специальные
Закон сохранения массы
Закон сохранения массы Если растворить сахар в воде, то масса раствора будет строго равна сумме масс сахара и воды.Этот и бесчисленное количество подобных опытов показывают, что масса тела есть неизменное свойство. При любом дроблении и при растворении масса остается
IV. Законы сохранения
IV. Законы сохранения Отдача Даже тот, кто не был на войне, знает, что при выстреле из орудия его ствол резко отходит назад. При стрельбе из ружья происходит отдача в плечо. Но и не прибегая к огнестрельному оружию, можно ознакомиться с явлением отдачи. Налейте в пробирку
Закон сохранения импульса
Закон сохранения импульса Произведение массы тела на его скорость называется импульсом тела (другое название – количество движения). Так как скорость – вектор, то и импульс является векторной величиной. Разумеется, направление импульса совпадает с направлением
Закон сохранения механической энергии
Закон сохранения механической энергии Мы убедились на только что рассмотренных примерах, как полезно знать величину, не изменяющую свое численное значение (сохраняющуюся) при движении.Пока мы знаем такую величину лишь для одного тела. А если в поле тяжести движется
Закон сохранения вращательного момента
Закон сохранения вращательного момента Если связать два камня веревкой и с силой бросить один из них, то второй камень полетит вдогонку за первым на натянутой веревке. Один камень будет обгонять второй, перемещение вперед будет сопровождаться вращением.Забудем про поле
Как законы сохранения подняли престиж неизменного в природе
Как законы сохранения подняли престиж неизменного в
Законы сохранения и симметрия мира
Законы сохранения и симметрия мира Одним из очень интересных вопросов для физиков последних двух поколений был вопрос: существует ли какая-нибудь связь между другими общими свойствами Вселенной и законами сохранения? Оказывается, существует, и самая непосредственная —