ПРИЛОЖЕНИЯ
ПРИЛОЖЕНИЯ
ЭУМ М-4
Система счисления — двоичная, с фиксированной запятой, 23 разряда Скорость работы — 50 тыс. операций сложения или вычитания в секунду; 15 тыс. операций умножения в секунду; 5,2 тыс. операций деления или извлечения квадратного корня в секунду; средняя скорость в режиме универсального счета — 10–15 тыс. операций в секунду.
Объем внутренней памяти: оперативная память — 1024 24-разрядных числа; постоянная память — 1024 23-разрядных числа.
Ввод информации — с перфоленты со скоростью 45–50 чисел в секунду.
Вывод информации — на устройство БП-20 со скоростью 42 слова в секунду.
В качестве элементной базы использовались транзисторы П14, П15, П16, П203, диоды Д2, Д9, Д12 и некоторые другие. Оперативная и постоянная памяти строились на ферритовых сердечниках, в качестве генераторов тока в этих ЗУ использовались радиолампы (всего около 100 штук).
Главный конструктор машины М. А. Карцев, старший конструктор В. В. Белынский.
Участники разработки: ст. научн. сотрудник, д-р. физ. — мат. наук А. Л. Брудно, научный сотрудник, канд. физ. — мат. наук Е. В. Гливенко, научный сотрудник, канд. физ. — мат. наук Д. М. Гробман, ст. научн. сотрудник, канд. техн. наук Ю. В. Поляк; ведущие инженеры Г. И. Танетов, Н. А. Дорохова, Л. В. Иванов, Р. П. Шидловский, Е. Н. Филинов; инженеры: Ю. Н. Глухов, А. Н. Чернов, Л. Я. Чумаков, Ю. В. Рогачев, И. З. Блох, Р. П. Макарова, В. П. Кузнецов, Е. С. Шерихов; конструкторы: Е. И. Цибуль, Ю. И. Ларионов, В. Ф. Сититков, Ю. А. Шмульян.
На различных этапах разработки и настройки принимало участие от 10 до 40 человек научных сотрудников, инженеров, конструкторов, техников и лаборантов ИНЭУМ.
ЭВМ М-4М
Разрядность — 29 двоичных разряда.
Объем внутренней памяти: постоянная память — 819–16 384 слова, оперативная память — 4096–16 384 слова.
Быстродействие — 220 тыс. операций в секунду.
Скорость ввода-вывода при межмашинном обмене — 3125 29-разрядных слов в секунду или 6250 14-разрядных слов в секунду.
Ввод с перфоленты — 500 строк в секунду.
Вывод на печать (БП-20) — 10–12 строк в секунду.
ЭВМ М-10
Среднее быстродействие — 5 млн операций в секунду.
Быстродействие на малом формате (16 разрядов) — около 10 млн операций в секунду.
Общий объем внутренней памяти — 5 млн байт.
Первый уровень — оперативная 0,5 млн байт; постоянная 0,5 млн байт.
Второй уровень — 4 млн байт.
Пропускная способность мультиплексного канала — более 6 млн байт в секунду (при одновременной работе 24 дуплексных направлений связи).
Емкость буферной памяти мультиплексного канала — более 64 тыс. байт.
Система прерывания программ — 72-канальная, с 5 уровнями приоритетов.
Показатели надежности:
• коэффициент готовности — не менее 0,975;
• время (среднее) безотказной работы — не менее 90 часов.
Степень унификации: коэффициент повторяемости — 346, коэффициент применяемости — 46 %.
Обеспечивается одновременная работа восьми пользователей на восьми математических пультах.
Математическое обеспечение машины М-10 включает: операционную систему, обеспечивающую разделение времени и оборудования, диалоговый режим одновременной отладки до 8 независимых программ и мультипрограммный режим автоматического прохождения до 8 независимых задач; систему программирования, включающую машинно-ориентированный язык АВТОКОД и проблемно-ориентированный язык АЛГОЛ-60, соответствующие трансляторы и средства отладки; библиотеку типовых и стандартных программ; диагностические программы; программы контроля функционирования (тесты).
Основные особенности машины
Машина М-10 содержит две линии арифметических процессоров. За один машинный такт одновременно выполняются операции с фиксированной и плавающей запятой, а также целочисленные операции:
• над 16 парами 16-разрядных чисел;
• над 8 парами 32-разрядных чисел;
• над 4 парами 64-разрядных чисел;
• над 2 парами 128-разрядных чисел.
Предусмотрены также векторные операции. Например, за 1 такт может быть произведено вычисление скалярного произведения векторов (в каждой линии процессоров — сумма произведений до 8 пар 16-разрядных или до 4 пар 32-разрядных чисел и, если необходимо, суммирование с результатом аналогичной операции, выполненной в предыдущем такте).
Одновременно с получением результатов основных операций в обеих линиях арифметических процессоров вырабатываются до 5 строк булевых переменных (признаки переполнения, признаки равенства результатов нулю, знаки результатов и т. д.). Специальный процессор, работающий одновременно с арифметическими процессорами, может выполнять логические операции над строками булевых переменных. В свою очередь, строки булевых переменных могут использоваться как маски для линий арифметических процессоров.
Адресация памяти осуществляется в 2 ступени: сначала формируется математический адрес путем суммирования содержимого базового регистра с 22-разрядным смещением: затем с помощью аппарата дескрипторных таблиц математический номер листа (старшие разряды математического адреса) подменяются физическим номером листа, при этом получается физический адрес. В качестве базовых и индексных используются 16 специальных регистров. Каждый пользователь имеет доступ к виртуальной памяти в 8 мегабайт, адресуемый с точностью до полуслова. К аппарату формирования физических адресов имеет доступ только операционная система; с этим аппаратом совмещен также аппарат защиты памяти.
Организация оперативной памяти позволяет за одно обращение выбирать от 2 до 64 байт одновременно, начиная от произвольного адреса.
Ю. В. Рогачев. Биографическая справка
Рогачев Юрий Васильевич родился 18 августа 1925 года в Калининской области. В январе 1943 года был призван в Советскую Армию и направлен на Дальний Восток. В 1945 году принимал участие в войне с Японией. В 1946 году окончил курсы военных радиотехников и до 1950 года занимался обслуживанием и ремонтом радиоаппаратуры в войсках. После демобилизации в июне 1950 года поступил на работу к И. С. Бруку в лабораторию электросистем Энергетического института АН СССР им. Г. М. Кржижановского. Принимал участие в работах по созданию одной из первых ЭВМ — машины М-1. В 1952 году поступил учиться на радиотехнический факультет Московского энергетического института (МЭИ). После окончания МЭИ в марте 1958 года вернулся (по распределению) в тот же коллектив, ставший к этому времени самостоятельной организацией — Институтом электронных управляющих машин (ИНЭУМ). Работал инженером, старшим инженером, старшим конструктором, руководителем лаборатории. Принимал участие под руководством М. А. Карцева в создании машин М-4 и М-4М.

Юрий Васильевич Рогачев, 1980-е годы
Разработка системы логических элементов, внедренная в одну из первых серийных транзисторных ЭВМ М-4М, явилась основой кандидатской диссертации, которую Ю. В. Рогачев успешно защитил в 1967 году.
С 1967 года — главный инженер созданного на базе отдела спецразработок ИНЭУМа Научно-исследовательского института вычислительных комплексов (НИИВК). Принимал участие в создании вычислительных машин М-10, М-10М, М-13 и построении вычислительных комплексов на их основе в качестве заместителя главного конструктора, а с 1983 года — в качестве главного конструктора. В 1977 году за разработку машины М-10 в составе коллектива присуждена Государственная премия СССР.
С 1983 года — директор Научно-исследовательского института вычислительных комплексов. Награжден орденами Отечественной войны, Трудового Красного Знамени, «Знак Почета». В настоящее время пенсионер. Передал автору многочисленные архивные документы (в копии), освещающие жизнь и творчество М. А. Карцева.
Опыт внедрения «Эльбрус-1»
Борис Александрович Андреев
(письмо Ю. Ревичу от 23.04.2012 г.)
От составителя
Я решил включить это письмо именно в этот очерк о М. А. Карцеве, хотя значительная его часть посвящена описанию мытарств эксплуатационщиков при установке ЭВМ «Эльбрус-1» разработки ИТМ И ВТ. С. А. Лебедев не виноват в том, что его ученики не смогли как следует наладить серийный выпуск замечательной в своей задумке машины «Эльбрус». Зато в ее сравнении с карцевскими М-10 и М4-2М очень хорошо видно, насколько был высоким уровень разработок коллектива, возглавляемого М. А. Карцевым. Публикуется с разрешения автора.
Уважаемый Юрий Всеволодович Ревич, в своей статье [6.4] Вы пишете: «„Эльбрус“ так и остался в истории единственным примером конкурентоспособных отечественных разработок после 1970-х годов». Позвольте рассказать Вам, как под моим руководством запускался первый и единственный в Ленинграде 2-х процессорный МВК «Эльбрус-1».
В 1982 году я работал в должности зам. главного инженера подразделения «Объект 6» в Ленинградском производственно-техническом предприятии, которое, в частности, занималось разработкой программного обеспечения для управляющих ЭВМ, входивших в состав супер РЛС комплексов. МВК «Эльбрус-1» и предназначался для управления одной из таких РЛС. Он и ставился на нашем предприятии для предварительной разработки рабочей программы.
Поскольку я в единственном лице разрабатывал планировку помещений для установки оборудования «Эльбрус-1» и лично разрабатывал всю систему энергообеспечения вплоть до шкафов управления агрегатами ПСЧ-50, обеспечивавшими «Эльбрус-1» электропитанием 220 В/400 Гц, а также проектировал систему трубопроводов водяного охлаждения «Эльбруса», я тщательно изучил руководящие технические мероприятия (РТМ) ИТМ и ВТ в части применяемых для этого материалов. В РТМ категорически запрещалось применять в системе водяного охлаждения латунную арматуру и красномедные трубы, а вентили и краны из нержавеющей стали на давление меньше 25 атмосфер в СССР практически не выпускались. Каково же было наше удивление, когда в секции охлаждения в первых пришедших стойках «Эльбруса» мы увидели и латунную арматуру, и красномедные трубы. Казалось бы — проблема решена, но она вылезла через год эксплуатации, когда из-за электрохимической коррозии на дистиллированной воде стали выходить из строя алюминиевые теплообменники, встроенные в шкафы «Эльбруса» из-за появившихся в них дыр. Кстати, ресурс указанных теплообменников равнялся 500 часам. Как же можно было в такую дорогостоящую (22 млн рублей) ЭВМ вставлять такие теплообменники? Но это были пока еще цветочки, ягодки нас ждали впереди.
Наконец установили все шкафы, раскатали кабельное хозяйство и попытались включить «Эльбрус». Не тут-то было. Оказалось, у «Эльбруса» отсутствует центральный пульт (который так и не появился, ну, не смогли в ИТМ и ВТ его разработать). Соединители в шкафах для подключения пульта есть, а пульта нет. Ну разобрались, какие контакты надо замкнуть, чтобы разрешить включение питания, перемкнули их канцелярскими скрепками (я не шучу, ответных-то частей соединителей нет) и начали наладку.
Первое, что выяснилось, никакой постоянной памяти в «Эльбрусе» нет, и чтобы его оживить, необходимо закачать в оперативную память с перфоленты нечто в виде BIOS. А перфолента бумажная, от частого использования рвется. Да и выполнена она была в коде, который устройство подготовки данных ЕС ЭВМ, поставляемое с «Эльбрусом», не поддерживает (код более старого ГОСТ). Пришлось мне бегать по Питеру в поисках пластмассовой перфоленты.
Наконец аппаратные тесты прошли, пора ставить операционную систему. Поехал я в ИТМ и ВТ договариваться о ее поставке. Тут-то меня и огорошили. Ты, говорят, мужик, заводи у себя журнал изменений и отступлений и, либо у тебя «Эльбрус» соответствует электрическим схемам и не работает, либо ты в соответствии со своим пониманием переделываешь электрические схемы, и «Эльбрус» худо-бедно начинает работать. Наш комплект «Эльбруса» имел заводской номер 22. От него, кстати, отказался академик Харитон, иначе не видеть бы нам его, как своих ушей. И везде, где стоял такой «Эльбрус», его ковыряли как кому придется. Загорский завод вконец потерял контроль над схемотехническим решением выпущенных. Пару раз на моей памяти они (загорчане) пытались объявить какой-то комплект «Эльбруса» эталонным, и произвести доработку всех выпущенных «Эльбрусов» к единой схемной реализации, но у них так ничего и не вышло.
Перейдем теперь к операционной системе. В ИТМ и ВТ мне было заявлено, что для того, чтобы установить операционную систему, необходимо привезти в ИТМ и ВТ мастер-диски дисководов, установленных у нас. Они у себя в ИТМ и ВТ отберут наиболее близкий мастер-диск по юстировочным параметрам, а мы у себя отюстируем дисководы по этому отобранному мастер-диску и можем приезжать со стандартным пакетом дисков для закачки на него операционной системы.
Во всех нормальных ЭВМ операционная система поставляется на магнитной ленте. В составе МВК «Эльбрус-1» было аж 8 лентопротяжек ЕС ЭВМ, но для них не был написан, как теперь говорится, драйвер, и они стояли в зале мертвым грузом.
Теперь скажем пару слов о накопителях на магнитных барабанах. Поначалу я никак не мог понять, откуда в ЭВМ 4-го поколения появляются магнитные барабаны, когда весь мир давно от них отказался. И вот, после долгих размышлений, я выскажу свою гипотезу. В ИТМ и ВТ был отдел накопителей на магнитных барабанах и, чтобы его не разгонять, ему поручили поучаствовать в разработке ЭВМ 4-го поколения. Мы, как всегда, идём своим путём.
У нашего предприятия были весьма тесные связи с Загорским электромеханическим заводом (ЗЭМЗ), одним из лучших заводов электроники в Союзе, так вот руководство завода в частных беседах весьма нелестно высказывалось о выпускаемых им «Эльбрусах», а в это время у них в течение 5-ти лет лежала документация на ЭВМ М-13 разработки М. А. Карцева, которая должна была стать сердцем Красноярской РЛС. Таким образом, можно сказать, макет МВК «Эльбрус-1», который выпускал ЗЭМЗ в угоду ИТМ и ВТ, стал причиной, по которой не была построена Красноярская РЛС (это мое личное мнение).
Вся убогость и халтурность МВК «Эльбрус-1» особенно контрастировала по сравнению с ЭВМ М-10 М. А. Карцева, которая стояла в 50-ти метрах у нас на предприятии. Это, кстати, было единственное место в СССР, где обе советские суперЭВМ стояли бок о бок и могли нами сравниваться.
Хочу добавить несколько слов по поводу МВК «Эльбрус-2». По моим сведениям три 10-процессорных МВК «Эльбрус-2» были использованы как управляющие ЭВМ в РЛС ПРО «Дон» под Москвой в Софрино. Мне лично неизвестно, как это удалось, но разработчики из РТИ им. академика Минца добились, чтобы ИТМ и ВТ сделали-таки из «Эльбруса-2» управляющие ЭВМ, тем более, что их прежние разработки РЛС использовали управляющие ЭВМ, разработанные М. А. Карцевым, и они знали, как должны работать управляющие ЭВМ.
Теперь несколько слов насчет ЭВМ М4-2М, год начала выпуска которой — 1964 и год прекращения выпуска — 1984. С 1971 года я лично принимал участие во вводе в эксплуатацию 9-ти этих ЭВМ сначала как инженер, а затем как руководитель пуско-наладочной бригады. Эти ЭВМ были заменены на компьютеры IBM PC к середине 2000 годов. Причем замена была произведена не переписыванием боевых программ, а созданием на IBM PC эмулятора команд ЭВМ М4-2М и загрузкой в IBM PC программ в кодах М4-2М. Дело в том, что архитектура ЭВМ М4-2М предвосхищала архитектуру IBM PC, и это в 1963 году!
Отдельно хочется сказать о последовательном синхронном шлейфе с пропускной способностью 100 Кбит/с ЭВМ М4-2М. Эта синхронная сеть разбивалась на 64, 128 или 256 каналов по 16 разрядов, и все устройства РЛС были синхронно привязаны к своим каналам и принимали или передавали в ЭВМ М4-2М соответствующую информацию в двоичном коде. Таким образом, это была одна из первых, если вообще не первая промышленная сеть обмена информацией между ЭВМ. Кстати, РЛС СПРН «Днепр» на базе ЭВМ М4-2М были полностью автоматическими, то есть обслуживающий персонал только наблюдал за работой РЛС, и все данные о ее работе автоматически пересылались на командный пункт в подмосковный Солнечногорск.
Отсюда можно сделать вывод, что ЭВМ М4-2М за свою долгую жизнь достойна Книги рекордов Гиннесса.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
I.2 Приложения TCP/IP
I.2 Приложения TCP/IP С самого начала в TCP/IP было заложено несколько важных свойств для служб работы с приложениями:? Терминальный доступ к любому хосту? Возможность копирования файлов с одного хоста на другой? Обмен сообщениями электронной почты между любыми двумя
Приложения
Приложения Приложение 1. Инструменты для анализа системы П1.1. Программа AVZ Программа AVZ (Антивирус Зайцева) – очень полезная утилита, и не раз меня выручала еще со времен Windows XP. Тогда я использовал антивирус Касперского, который не умел работать в безопасном режиме.
Приложения
Приложения Подарки – далеко не единственное, на что можно потратить «голоса»: на самом деле огромное их количество съедают контактовские приложения и виртуальные игры, которых в сети несколько тысяч. Популярность контакт-игр колоссальная: согласно статистике, в одну
Приложения
Приложения Насколько я помню, идея социальных мини-программ впервые появилась как раз в Facebook, и лишь потом пошла по рукам других соцсетей. Мы уже знакомы с тем, как эта штука работает «ВКонтактах» – и скажу я вам, положа руку на сердце, что для нашего юзера фейсбучные
Приложения
Приложения В приложениях я расскажу о самых востребованных, по моему опыту, чисто технических вещах, связанных с оформлением
Приложения
Приложения A. Язык программирования RubyA.1 Базовые типы. Базовыми типами языка Ruby являются числа, строки (объекты класса String), массивы (класс Array), диапазоны (Range), хэши или ассоциативные массивы (Hash), символы (Symbol) и регулярные выражения (объекты класса Regexp). Любое целое число x G Z
Приложения
Приложения
Приложения
Приложения Приложение 1 Точки восстановления системы 1. Что это такое? Точки восстановления системы — это «моментальные снимки» (snapshots) текущего состояния Windows, позволяющие вернуть систему к более раннему состоянию. Конечно, при таком откате будет потеряна часть
Приложения
Приложения Приложение 1. Устройство компьютера В этом приложении мы кратко рассмотрим устройство персонального компьютера – поговорим о его компонентах.Современный персональный компьютер изображен на рис. П1. Рис. П1.Современный персональный компьютер и его
Приложения
Приложения Приложение A Линки Библиотеки, поддерживающие FictionBookhttp://www.fictionbook.ru — FictionBook.lib;http://lib.aldebaran.ru — библиотека Альдебарана; Крупнейшая, на момент написания книги, библиотека Рунета.http://www.fenzin.org — библиотека «Фензин»; Специализируется на фантастике и
Приложения
Приложения Клавиатурные комбинации Параметры загрузки Замечание При загрузке, работая с клавишами, их необходимо удерживать. Finder Управление