Совет 7. При использовании контейнеров указателей, для которых вызывался оператор new, не забудьте вызвать delete для указателей перед уничтожением контейнера
Совет 7. При использовании контейнеров указателей, для которых вызывался оператор new, не забудьте вызвать delete для указателей перед уничтожением контейнера
Контейнеры STL отличаются умом и сообразительностью. Они поддерживают итераторы для перебора как в прямом, так и в обратном направлении (begin, end, rbegin и т. д.); они могут сообщить тип хранящихся в них объектов (value_type); они выполняют все необходимые операции управления памятью при вставке и удалении; они сообщают текущее количество элементов и максимальную вместимость (size и max_size соответственно); и, конечно же, они автоматически уничтожают все хранящиеся в них объекты при уничтожении самого контейнера.
Работая с такими интеллектуальными контейнерами, многие программисты вообще забывают о необходимости «прибрать за собой» и надеются, что контейнер выполнит за них всю грязную работу. Нередко их ожидания оправдываются, но если контейнер содержит указатели на объекты, созданные оператором new, этого не происходит. Разумеется, контейнер указателей уничтожает все хранящиеся в нем элементы при уничтожении самого контейнера, но «деструктор» указателя ничего не делает! Он не вызывает delete.
В результате при выполнении следующего фрагмента возникает утечка ресурсов:
void doSomething() {
vector<Widget*> vwp;
for (int i=0;i<SOME_MAGIC_NUMBER;++i) vwp.push_back(new Widget);
// Использовать vwp
} // Здесь происходит утечка Widget!
Все элементы vwp уничтожаются при выходе vwp из области видимости, но это не изменяет того факта, что delete не вызывается для объектов, созданных оператором new. За удаление таких элементов отвечает программист, а не контейнер. Так было задумано. Только программист знает, нужно ли вызывать delete для этих указателей.
Обычно это делать нужно. На первый взгляд решение выглядит довольно просто:
void doSomethng() {
vector<Widget*> vwp;
... // Как прежде
for (vector<Widget*>::iterator =vwp.begin();
i != vwp.end();
++i)
delete *i;
}
Такое решение работает, если не проявлять особой разборчивости в трактовке этого понятия. Во-первых, новый цикл for делает примерно то же, что и foreach, но он не столь нагляден (совет 43). Во-вторых, этот код небезопасен по отношению к исключениям. Если между заполнением vwp указателями и вызовом delete произойдет исключение, это снова приведет к утечке ресурсов. К счастью, с обеими проблемами можно справиться.
Чтобы от foreach-подобного цикла перейти непосредственно к foreach, необходимо преобразовать delete в объект функции. С этим справится даже ребенок — если, конечно, вы найдете ребенка, который захочет возиться с STL:
template <typename Т>
struct DeleteObject:// В совете 40 показано,
public unary_function<const T*.void> { // зачем нужно наследование
void operator()(const Т* ptr) const
{
delete ptr;
}
};
Теперь становится возможным следующее:
void doSomething() {
//См. ранее
for_each(vwp.begin(),vwp.end(),DeleteObject<Widget>());
}
К сожалению, вам приходится указывать тип объектов, удаляемых DeleteObject (в данном примере Widget), а это раздражает, vwp представляет собой vector<Widget*> — разумеется, DeleteObject будет удалять указатели Widget*! Подобные излишества не только раздражают, но и приводят к возникновению трудно обнаружимых ошибок. Допустим, кто-нибудь по случайности объявляет класс, производный от string:
class SpecialString: public string{...};
Это рискованно, поскольку string, как и все стандартные контейнеры STL, не имеет виртуального деструктора, а открытое наследование от классов без виртуального деструктора относится к числу основных табу С++. Подробности можно найти в любой хорошей книге по С++. (В «Effective С++» ищите в совете 14.) И все же некоторые программисты поступают подобным образом, поэтому давайте разберемся, как будет вести себя следующий код:
void doSomething() {
deque<SpecialString*> dssp:
for_each(dssp.begin(),end(),// Непредсказуемое поведение! Удаление
DeleteObject<string>()); // производного объекта через указатель
// на базовый класс при отсутствии // виртуального деструктора
}
Обратите внимание: dssp объявляется как контейнер, в котором хранятся указатели SpecialString*, но автор цикла for_each сообщает DeleteObject, что он будет удалять указатели string*. Понятно, откуда берутся подобные ошибки. По своему поведению SpecialString имеет много общего со string, поэтому клиенту легко забыть, что вместо string он использует SpecialString.
Чтобы устранить ошибку (а также сократить объем работы для клиентов DeleteObject), можно предоставить компилятору возможность вычислить тип указания, передаваемого DeleteObject::operator(). Все, что для этого нужно, — переместить определение шаблона из DeleteObject в operator():
struct DeleteObject{// Убрали определение шаблона
// и базовый класс
template<typename Т>// Определение шаблона
void operator()(const Т* ptr) const
{
delete ptr;
}
};
Компилятор знает тип указателя, передаваемого DeleteObject:: operator(), поэтому мы можем заставить его автоматически создать экземпляр operator() для этого типа указателя. Недостаток подобного способа вычисления типа заключается в том, что мы отказываемся от возможности сделать объект DeleteObject адаптируемым (совет 40). Впрочем, если учесть, на какое применение он рассчитан, вряд ли это можно считать серьезным недостатком.
С новой версией DeleteObject код клиентов SpecialString выглядит так:
void doSomething()
{
deque<SpecialString*> dssp;
...
for_each(dssp.begin(),dssp.end(),
DeleteObject());// Четко определенное поведение
}
Такое решение прямолинейно и безопасно по отношению к типам, что и требовалось.
Однако безопасность исключений все еще не достигнута. Если исключение произойдет после создания SpecialString оператором new, но перед вызовом foreach, снова произойдет утечка ресурсов. Проблема решается разными способами, но простейший выход заключается в переходе от контейнера указателей к контейнеру умных указателей (обычно это указатели с подсчетом ссылок). Если вы незнакомы с концепцией умных указателей, обратитесь к любой книге по С++ для программистов среднего уровня и опытных. В книге «More Effective С++» этот материал приводится в совете 28.
Библиотека STL не содержит умных указателей с подсчетом ссылок. Написание хорошего умного указателя (то есть такого, который бы всегда правильно работал) — задача не из простых, и заниматься ею стоит лишь в случае крайней необходимости. Я привел код умного указателя с подсчетом ссылок в «More Effective С++» в 1996 году. Хотя код был основан на хорошо известной реализации умного указателя, а перед изданием книги материал тщательно проверялся опытными программистами, за эти годы было найдено несколько ошибок. Количество нетривиальных сбоев, возникающих при подсчете ссылок в умных указателях, просто невероятно (за подробностями обращайтесь к списку опечаток и исправлений для книги «More Effective С++» [28]).
К счастью, вам вряд ли придется создавать собственные умные указатели, поскольку найти проверенную реализацию не так сложно. Примером служит указатель shared_ptr из библиотеки Boost (совет 50). Используя shared_ptr, можно записать исходный пример данного совета в следующем виде:
void doSomething() {
typedef boost::shared_ptr<Widget> SPW; //SPW = "shared pointer
// to Widget"
vector<SPW> vwp;
for (int i=0;i<SOME_MAGIC_NUMBER;++i) //Создать SPW no Widget*
vwp.push_back(SPW(new Widget));//и вызвать push_back
//Использовать vwp
}//Утечки Widget не происходит.
//даже если в предыдущем фрагменте
//произойдет исключение
Никогда не следует полагать, что автоматическое удаление указателей можно обеспечить созданием контейнера, содержащего auto_ptr. Эта кошмарная мысль чревата такими неприятностями, что я посвятил ей совет 8.
Главное, что необходимо запомнить: контейнеры STL разумны, но они не смогут решить, нужно ли удалять хранящиеся в них указатели. Чтобы избежать утечки ресурсов при работе с контейнерами указателей, необходимо либо воспользоваться объектами умных указателей с подсчетом ссылок (такими, как shared_ptr из библиотеки Boost), либо вручную удалить каждый указатель при уничтожении контейнера.
Напрашивается следующая мысль: если структура DeleteObject помогает справиться с утечкой ресурсов для контейнеров, содержащих указатели на объекты, можно создать аналогичную структуру DeleteArray, которая поможет избежать утечки ресурсов для контейнеров с указателями на массивы. Конечно, такое решение возможно. Другой вопрос, насколько оно разумно. В совете 13 показано, почему динамически размещаемые массивы почти всегда уступают vector и string, поэтому прежде чем садиться за написание DeleteArray, пожалуйста, прочитайте совет 13. Может быть, он убедит вас в том, что лучше обойтись без DeleteArray.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Разрешение системных указателей
Разрешение системных указателей Системный указатель считается разрешенным, если содержит прямой адрес системного объекта. Указатель, содержащий символический адрес, называется неразрешенным. Символический адрес используется для поиска объекта в библиотеке и состоит
Другие типы указателей
Другие типы указателей Системный указатель обеспечивает доступ к системному объекту, но при выполнении некоторых операций нужно работать с данными, содержащимися внутри таких объектов. Для этого используются другие типы указателей. Но прежде чем рассказать о них, я
Аппаратная защита указателей
Аппаратная защита указателей Мы понимали, что необходима некоторая форма аппаратной защиты памяти для указателей. Многие из больших систем того времени, такие как System/370, использовали для защиты памяти специальные аппаратные разряды, разрешавшие или запрещавшие
Выбор указателей мыши
Выбор указателей мыши Еще одной отличительной особенностью интерфейса Windows Vista стал набор изящных видов указателей мыши. Как и в предыдущих версиях Windows, у вас сохранилась возможность изменять вид указателя при различных состояниях. В окне Персонализация щелкните
7.7. Изменение указателей мыши
7.7. Изменение указателей мыши Возможность настройки указателей мыши существовала и в самых ранних версиях операционной системы Windows, поэтому разработчики Windows 7 решили не изобретать велосипед и использовать уже отлаженный механизм. При этом они взяли его в том виде, в
Основы указателей
Основы указателей СОМ, подобно DCE (Distributed Computing Environment – среда распределенных вычислений), ведет свое начало от языка программирования С. Хотя лишь немногие разработчики используют С для создания или использования компонентов СОМ, именно от С СОМ унаследовала синтаксис
Проблема обобщенных указателей
Проблема обобщенных указателей Что такое обобщенные указатели и почему они полезны Представим себе некий объект, который имеет перегруженную операцию operator->(). Мы можем его представить себе как некий обобщенный указатель, который не является указателем в полном смысле
Выбор указателей мыши
Выбор указателей мыши Указатели мыши в Vista выглядят изящно, но не совсем привычно. Если хотите, можете поменять и их. Для этого щелкните кнопкой мыши на ссылке Указатели мыши в окне Персонализация. В открывшемся окне вы увидите примеры указателей для выбранной схемы (рис.
R.4.6 Преобразования указателей
R.4.6 Преобразования указателей Всюду, где указатели (§R.8.2.1) присваиваются, инициализируются, сравниваются или используются иным образом, могут происходить следующие преобразования:Константное выражение (§R.5.19), которое сводится к нулю, преобразуется в указатель, обычно
Правило 52: Если вы написали оператор new с размещением, напишите и соответствующий оператор delete
Правило 52: Если вы написали оператор new с размещением, напишите и соответствующий оператор delete Операторы new и delete с размещением встречаются в C++ не слишком часто, поэтому в том, что вы с ними не знакомы, нет ничего страшного. Вспомните (правила 16 и 17), что когда вы пишете такое
Совет 33. Будьте внимательны при использовании remove-подобных алгоритмов с контейнерами указателей
Совет 33. Будьте внимательны при использовании remove-подобных алгоритмов с контейнерами указателей Предположим, мы динамически создаем ряд объектов Widget и сохраняем полученные указатели в векторе:class Widget {public:bool isCertified() const; // Функция сертификации объектов Widgetvector<Widget*> v; //
Описание указателей
Описание указателей Мы знаем, как описывать переменные типа int и других типов. Но как описать переменную типа "указатель"? На первый взгляд это можно сделать так: pointer ptr; /* неправильный способ описания указателя */Почему нельзя использовать такую запись? Потому
3.9.2. Взаимосвязь массивов и указателей
3.9.2. Взаимосвязь массивов и указателей Если мы имеем определение массива:int ia[] = { 0, 1, 1, 2, 3, 5, 8, 13, 21 };то что означает простое указание его имени в программе?ia;Использование идентификатора массива в программе эквивалентно указанию адреса его первого элемента:ia;ia[0]Аналогично
6.7 Преобразования Указателей
6.7 Преобразования Указателей Везде, где указатели присваиваются, инициализируются, сравниваются и т.д. могут выполняться следующие преобразовния.Константа 0 может преобразовываться в указатель, и грантируется, что это значение породит указатель, отлиный от указателя на
Типы указателей
Типы указателей PBoolean Тип указателя на boolean PByte Тип указателя на byte PShortint Тип указателя на shortint PChar Тип указателя на char PSmallint Тип указателя на smallint PWord Тип указателя на word PPointer Тип указателя на pointer PInteger Тип указателя на
Настройка указателей мыши
Настройка указателей мыши Для изменения формы указателей мыши щелкните кнопкой мыши в окне Персонализация на ссылке Указатели мыши. При этом откроется вкладка Указатели диалогового окна Свойства: Мышь (рис. 2.25). Рис. 2.25. Окно настройки указателей мышиВы можете выбрать