Совет 38. Проектируйте классы функторов для передачи по значению
Совет 38. Проектируйте классы функторов для передачи по значению
Ни С, ни С++ не позволяют передавать функции в качестве параметров других функций. Вместо этого разрешается передавать указатели на функции. Например, объявление стандартной библиотечной функции qsort выглядит следующим образом:
void qsort(void *base, size_t nmemb, size_t size,
int (*cmpfcn)(const void*,const void*));
В совете 46 объясняется, почему вместо функции qsort обычно рекомендуется использовать алгоритм sort, но дело не в этом. Нас сейчас интересует объявление параметра cmpfcn функции qsort. При внимательном анализе становится ясно, что аргумент cmpcfn, который является указателем на функцию, копируется (то есть передается по значению) из точки вызова в функцию qsort. Данный пример поясняет правило, соблюдаемое стандартными библиотеками С и С++, — указатели на функции должны передаваться по значению.
Объекты функций STL создавались по образцу указателей на функции, поэтому в STL также действует правило, согласно которому объекты функций передаются по значению (то есть копируются). Вероятно, это правило лучше всего демонстрирует приведенное в Стандарте объявление алгоритма for_each, который получает и передает по значению объекты функций:
template<class InputIterator.
class Function>
Functon // Возврат по значению
for_each(InputIterator first,
InputIterator last,
Functon f);// Передача по значению
Честно говоря, передача по значению не гарантирована полностью, поскольку вызывающая сторона может явно задать типы параметров в точке вызова. Например, в следующем фрагменте foreach получает и возвращает функторы по ссылке:
class DoSomething:
public unary_function<int,void>{// Базовый класс описан
void operator() (int x){...}// в совете 40
};
typedef deque<int>::iterator DequeIntIter: // Вспомогательное определение
deque<int> di;
...
DoSomething d; // Создать объект функции
for_each<DequeIntIter, //Вызвать for_each с типами
DoSomethng&>(di .begin(),//параметров DequelntIter
di.end(),//и DoSomething&: в результате
d);//происходит передача
//и возврат по ссылке.
Пользователи STL почти никогда не используют эту возможность, а в некоторых реализациях алгоритмов STL при передаче объектов функций по ссылке программы даже не компилируются. В продолжение этого совета будем считать, что объекты функций всегда передаются по значению, поскольку на практике это почти всегда так.
Поскольку объекты функций передаются и возвращаются по значению, вы должны позаботиться о том, чтобы объект функции правильно работал при передаче подобным способом (то есть копированием). Для этого необходимо соблюдение двух условий. Во-первых, объекты функций должны быть небольшими, в противном случае копирование обойдется слишком дорого. Во-вторых, объекты функций должны быть мономорфными (то есть не полиморфными), поэтому в них не могут использоваться виртуальные функции. Второе требование связано с тем, что при передаче по значению объектов производных классов в параметрах базового класса происходит отсечение: в процессе копирования удаляются специализированные составляющие (другой пример проблемы отсечения в STL приведен в совете 3).
Бесспорно, эффективность является важным фактором, и предотвратить отсечение тоже необходимо, однако не все функторы малы и мономорфны. Одно из преимуществ объектов функций перед обычными функциями заключается в отсутствии ограничений на объем информации состояния. Некоторые объекты функций от природы «упитанны», и очень важно, чтобы они могли передаваться алгоритмам STL так же просто, как и их «тощие» собратья.
Столь же нереалистичен и запрет на полиморфные функторы. Иерархическое наследование и динамическое связывание относятся к числу важнейших особенностей С++, и при проектировании классов функторов они могут принести такую же пользу, как и в других областях. Что такое классы функторов без наследования? С++ без «++». Итак, необходимы средства, которые бы позволяли легко передавать большие и/или полиморфные объекты функций с соблюдением установленного в STL правила о передаче функторов по значению.
Такие средства действительно существуют. Достаточно взять данные и/или полиморфные составляющие, которые требуется сохранить в классе функтора, перенести их в другой класс и сохранить в классе функтора указатель на этот новый класс. Рассмотрим пример создания класса полиморфного функтора с большим количеством данных:
template<typename Т> // BPFC = "Big Polymorphic
class BPFC: //Functor class"
public // Базовый класс описан
unary_function<T,void> {// в совете 40
private:
Widget w;// Класс содержит большой объем
int х;// данных, поэтому передача
// по значению
// была бы неэффективной
public:
virtual void operator() (const T& val) const; // Виртуальная функция.
// создает проблему
};// отсечения
Мы выделяем все данные и виртуальные функции в класс реализации и создаем компактный, мономорфный класс, содержащий указатель на класс реализации:
template<typename Т> //Новый класс реализации
class BPFCImpl{ //для измененного BPFC.
private:
Widget w; //Все данные, ранее находившиеся
int х: //в BPFC, теперь размещаются
//в этом классе,
vrtual ~BPFCImpl(); //В полиморфных классах нужен
//виртуальный деструктор,
virtual void operator() (const T& val) const;
friend class BPFC<T>;// Разрешить BPFC доступ к данным
};
template<typename T>
class BPFC:// Компактная, мономорфная версия
public unary_function<T,void> {
private:
BPFCImpl<T>* pImpl;// Все данные BPFC
public:
void operator()(const T& val) const; // Функция не является
{// виртуальной; вызов передается
plImpl->operator()(val);// BPFCImpl
}
};
Реализация BFPC:: operator() дает пример того, как должны строиться реализации всех виртуальных функций BPFC: они должны вызывать свои виртуальные «прототипы» из BPFCImpl. Полученный в результате класс функтора (BPFC) компактен и мономорфен, но при этом он предоставляет доступ к большому объему данных состояния и работает полиморфно.
Материал изложен довольно кратко, поскольку описанные базовые приемы хорошо известны в кругах С++. В книге «Effective С++» этой теме посвящен совет 34. В книге «Приемы объектно-ориентированного проектирования» [6] соответствующая методика называется «паттерн Bridge». Саттер в своей книге «Exceptional С++» [8] использует термин «идиома Pimpl».
С позиций STL прежде всего необходимо помнить о том, что классы функторов, использующие данную методику, должны поддерживать соответствующий механизм копирования. Если бы вы были автором приведенного выше класса BPFC, то вам пришлось бы позаботиться о том, чтобы копирующий конструктор выполнял осмысленные действия с объектом BPFCImpl, на который он ссылается. Возможно, простейшее решение заключается в организации подсчета ссылок при помощи указателя shared_ptr из библиотеки Boost или его аналога (см. совет 50).
В сущности, копирующий конструктор BPFC — единственное, о чем вам придется побеспокоиться в контексте данного примера, поскольку при передаче и получении функторов от функций STL всегда происходит копирование (помните, что говорилось выше о передаче по значению?). Из этого вытекают два требования: компактность и мономорфизм.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
21.2. Адрес многоадресной передачи
21.2. Адрес многоадресной передачи При описании адресов многоадресной передачи необходимо провести различия между IPv4 и
Линии передачи
Линии передачи Хотя в PSpice имеется специальное устройство под именем T (для линий передачи), применение его ограничено, поскольку эта модель не учитывает потерь в линии. Мы предпочитаем использовать для линии передачи модель, которая учитывает потери и содержит элементы R,
25. Передача параметров по значению, (интеллектуальному) указателю или ссылке
25. Передача параметров по значению, (интеллектуальному) указателю или ссылке РезюмеВы должны четко уяснить разницу между входными, выходными параметрами и параметрами, предназначенными и для ввода, и для вывода информации, а также между передачей параметров по значению
71. Проектируйте и пишите безопасный в отношении ошибок код
71. Проектируйте и пишите безопасный в отношении ошибок код РезюмеВ каждой функции обеспечивайте наиболее строгую гарантию безопасности, какой только можно добиться без дополнительных затрат со стороны вызывающего кода, не требующего такого уровня гарантии. Всегда
73. Генерируйте исключения по значению, перехватывайте — по ссылке
73. Генерируйте исключения по значению, перехватывайте — по ссылке РезюмеГенерируйте исключения по значению (не через указатель) и перехватывайте их как ссылки (обычно константные). Эта комбинация наилучшим образом соответствует семантике исключений. При повторной
1.6.17. Правило расширяемости: проектируйте с учетом изменений в будущем, поскольку будущее придет скорее, чем кажется
1.6.17. Правило расширяемости: проектируйте с учетом изменений в будущем, поскольку будущее придет скорее, чем кажется Если доверять заявлениям других людей о "единственном верном пути" неблагоразумно, еще большим безрассудством будет вера в непогрешимость собственных
Правило 18: Проектируйте интерфейсы так, что их легко было использовать правильно и трудно – неправильно
Правило 18: Проектируйте интерфейсы так, что их легко было использовать правильно и трудно – неправильно C++ изобилует интерфейсами. Интерфейсы функций. Интерфейсы классов. Интерфейсы шаблонов. Каждый интерфейс – это средство, посредством которого пользователь
Правило 20: Предпочитайте передачу по ссылке на const передаче по значению
Правило 20: Предпочитайте передачу по ссылке на const передаче по значению По умолчанию в C++ объекты передаются в функции и возвращаются функциями по значению (свойство, унаследованное от C). Если не указано противное, параметры функции инициализируются копиями реальных
Способы передачи
Способы передачи Существуют два способа передачи потокового видео – последовательный (Progressive Streaming) и в реальном времени (Real-Time Streaming).При передаче последовательным способом качество изображения всегда лучше, поскольку видео воспроизводится с жесткого диска
Проблемы передачи
Проблемы передачи При трансляции потокового видео через Интернет могут возникать проблемы, ухудшающие качество передачи. Среди них можно выделить несколько основных.Перебои в связиПотоковое вещание требует стабильной связи. Поскольку Интернет не может обеспечить
1.6.17. Правило расширяемости: проектируйте с учетом изменений в будущем, поскольку будущее придет скорее, чем кажется
1.6.17. Правило расширяемости: проектируйте с учетом изменений в будущем, поскольку будущее придет скорее, чем кажется Если доверять заявлениям других людей о "единственном верном пути" неблагоразумно, еще большим безрассудством будет вера в непогрешимость собственных
Совет 40. Классы функторов должны быть адаптируемыми
Совет 40. Классы функторов должны быть адаптируемыми Предположим, у нас имеется список указателей Widget* и функция, которая по указателю определяет, является ли объект Widget «интересным»:list<Widget*> WidgetPtrs:bool isInteresting(const Widget *pw):Если потребуется найти в списке первый указатель на
Отложенные классы как частичные интерпретации: классы поведения
Отложенные классы как частичные интерпретации: классы поведения Не все отложенные классы так близки к АТД как STACK. В промежутке между полностью абстрактным классом, таким как STACK, в котором все существенные компоненты отложены, и эффективным классом, таким как FIXED_STACK,