Переполнение адреса
Переполнение адреса
Так как мы решили не использовать на System/38 48-разрядный адрес повторно до следующей перезагрузки, встал вопрос о том, что однажды все доступные адреса могут быть исчерпаны. В поисках ответа на него, мы провели некоторые интересные подсчеты. В соответствии с их результатами, если выполнять одну IPL в день 365 дней в году, то повторное использование номера IPL потребуется через 180 лет. Итак, опасности, что расширения идентификаторов сегментов будут повторяться, не существовало. Зная проектируемую производительность будущих процессоров, мы могли вычислить максимальное число 64-килобайтных сегментов, которое будет сгенерировано в интервале между ежедневными IPL. Эти расчеты также показали, что проблемы нет. И все же прогноз оказался неверным — некоторые большие AS/400 стали выходить за границы адресов[ 67 ].
Что же случилось? Во-первых, одна IPL в день — это неплохое допущение для ранних System/38, но после того как многие заказчики стали использовать свои компьютеры 24 часа в сутки, времени на перезагрузку не осталось. Кроме того, наши системы сильно увеличились в размерах, и время IPL стало слишком большим. С тех пор мы внесли существенные изменения в AS/400, что позволило сократить время IPL до нескольких минут. Но даже при этом одна IPL в день была неверным допущением. Второй ошибкой в вычислениях было предположение о 64-килобайтном сегменте. Используя представление адреса 24/24 оригинальный VMC всегда создавал 16-мегабайтные сегменты.
Ситуация усугублялась тем, что компонент управления основной памятью в оригинальном VMC разделял полное 48-разрядное виртуальное адресное пространство на квадранты. Старшие два разряда адреса задавали квадрант в зависимости от назначения последнего. Один квадрант был зарезервирован для адресов постоянных объектов, так что у всех постоянных адресов два старших разряда были одинаковы. Другой квадрант был выделен адресам для временных объектов, третий — для адресов временных объектов групп доступа[ 68 ]. Так как постоянные объекты не могут входить в группу доступа, то четвертый квадрант не использовался. Такое решение было принято в предположении, что 48-разрядное адресное пространство настолько велико, что на одну его четверть можно безболезненно «закрыть глаза». Из 256 ТБ (248 байтов) виртуальной памяти, которыми мы так любили похваляться, 64 ТБ никогда не использовались в System/38 и первых моделях AS/400.
Проблема, возникшая в некоторых больших системах AS/400, состояла в выходе за пределы диапазона временных адресов. Эта проблема получила название переполнения идентификатора сегмента, так как все идентификаторы сегментов, доступные в интервалах между перезагрузками, были использованы. При разделении адресного пространства на квадранты на каждую IPL приходилось лишь по 4 миллиона 16-мегабайтных временных сегментов. Вследствие этого, большие системы с приложениями, использовавшими много временных объектов, выходили за пределы диапазона временных идентификаторов сегментов, если не перегружались по несколько дней. С точки зрения пользователя, положение можно было исправить довольно просто — перезагрузить систему[ 69 ]. Но причин происшедшего это паллиативное решение не устраняло.
8первые версии ОС для AS/400 были внесены изменения, позволявшие уменьшить проблему переполнения адресов. Компоненты стали использовать 64-килобай-тные сегменты вместо 16-мегабайтных, везде, где было возможно. Был также задействован ранее выброшенный квадрант адресного пространства. Разумеется, эти изменения не решили проблему, но они позволили нам продержаться до появления новых RISC-процессоров.
Проблема касалась и постоянных адресов. Их максимальное число ограничено объемом дискового пространства на подключенных к системе устройствах, поскольку даже удаленные объекты продолжают занимать некоторое место на диске. Мы ограничили общий объем дискового пространства, которое могло быть подключено к AS/ 400, чтобы пользователь не мог исчерпать постоянные адреса. Ведь выход за пределы постоянных адресов нельзя исправить с помощью IPL, здесь потребуется полная переустановка системы, что, разумеется, совершенно неприемлемо.
Я потратил несколько разделов на описание структуры адресации System/38 и первых моделей AS/400, чтобы показать причины, заставившие IBM перейти на RISC-процессоры. Еще до выпуска первой AS/400 мы знали, что 48-разрядный адрес ограничивает будущий рост системы. По мере увеличения размеров и скорости работы, системы начинали использовать все больше временных адресов. Заказчики же хотели подключать все больший объем дисков.
Нам потребовалось некоторое время, чтобы убедить руководство в невозможности использовать 48-разрядный адрес в будущих системах. В Рочестере всегда была популярна старая поговорка: «Не надо чинить то, что не ломается». И вот, наконец, мы убедили менеджеров, что то, что сломалось, сломалось безвозвратно. Хорошо еще то, что поломка случилась внутри системы. Независимость AS/400 от технологии защитила наших заказчиков.
Если в вычислительной архитектуре изменяются адреса, то приходится менять и все остальное. Мы восприняли случившееся как шанс избавиться от IMPI и перейти на RISC. Наш первый RISC-процессор, который мы начали разрабатывать в 1990 году и назвали С-RISC («С» — обозначает коммерческий), имел 96-разрядный адрес. У нас появилось место для такого большого адреса в указателях, и мы не стали стесняться. Когда в 1991 году было принято решение использовать архитектуру PowerPC, размер адреса был сокращен до 64 разрядов.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Переполнение переменной jiffies
Переполнение переменной jiffies Переменная jiffies, так же как и любое целое число языка программирования С, после достижения максимально возможного значения переполняется. Для 32-разрядного беззнакового целого числа максимальное значение равно 2??- 1. Поэтому перед тем как
17.1.4. Адреса
17.1.4. Адреса Поскольку каждый протокол поддерживает собственное определение сетевого адреса, интерфейс сокетов должен абстрагировать адреса. В качестве базовой формы адреса используется структура struct sockaddr; его содержимое устанавливается по-разному для каждого
Адреса
Адреса Часто на Web-страницах указывают контактные данные их создателей (почтовые и электронные адреса, телефоны, факсы и пр.). Для этого HTML предусматривает особый тег <ADDRESS>. Он ведет себя так же, как тег абзаца <P>, но его содержимое выводится курсивом:<ADDRESS>Я — адрес
IР-адреса
IР-адреса Вообще, доменные адреса предназначены исключительно для пользователей. Компьютеру же гораздо удобнее работать с цифровыми именами, называемыми IP-адресами. IP-адрес – это тот же адрес домена, но написанный на понятном компьютеру языке. Он состоит из 32-разрядного
14.2. Переполнение буфера
14.2. Переполнение буфера Это одна из самых популярных и в то же время наиболее сложная в использовании уязвимость. Для начала определимся, почему программисты допускают такие ошибки, при которых возможно выполнить переполнение буфера?В таких языках, как С++, для работы с
Адреса
Адреса Часто на Web-страницах указывают контактные данные их создателей (почтовые и электронные адреса, телефоны, факсы и пр.). Для этого HTML предусматривает особый тег <ADDRESS>. Он ведет себя так же, как тег абзаца <P>, но его содержимое выводится курсивом:<ADDRESS>Я — адрес
5.8 Адреса
5.8 Адреса В протоколе IP используются IP-адреса, которые идентифицируют хосты и маршрутизаторы для пересылки на них информации. Каждому хосту нужно присвоить уникальный IP-адрес, который и будет использоваться в реальном взаимодействии. Имена хостов транслируются в
Переполнение буфера
Переполнение буфера Некоторые вирусы и атаки достигают цели без участия пользователя. Несмотря на усилия, интенсивность удаленных атак не снижается, а отражать их становится все труднее. Как это получается? Ведь чтобы программа, пусть и зловредная, что-то сделала, она
R.3.7 Адреса
R.3.7 Адреса Любой объект - это некоторая область памяти, адрес - выражение, ссылающееся на объект или функцию. Очевидным примером адреса будет имя объекта. Существуют операции, порождающие адреса, например, если E выражение типа указатель, то *E - адресное выражение,
3.1.3. Переполнение при арифметических операциях
3.1.3. Переполнение при арифметических операциях Переполнением принято называть ситуацию, когда при операциях над переменной результат выходит за пределы ее диапазона. Рассмотрим следующий пример (листинг 3.4, проект Overflow1 на компакт-диске).Листинг 3.4. Переполнение при
Переполнение и потеря значимости при обработке чисел с плавающей точкой
Переполнение и потеря значимости при обработке чисел с плавающей точкой Что произойдет, если значение переменной типа float выйдет за установленные границы? Например, предположим, что вы умножаете 10е38 на 100 (переполнение) или делите 10е - 37 на 1000 (потеря значимости).
10.6.1. Переполнение буфера
10.6.1. Переполнение буфера Почти псе основные Internet-демоны, включая демоны таких программ, как sendmail, finger, talk и др., подвержены атакам типа переполнение буфера. О них следует обязательно помнить при написании программ, которые должны выполняться с правами пользователя root, а
Глава 8 Переполнение буфера
Глава 8 Переполнение буфера В этой главе обсуждаются следующие темы: • Стек • Стековый фрейм функции • Основы переполнения буфера • Пример программы, уязвимой к переполнению буфера • Современные способы переполнения буфера • Новаторские принципы построения