Пул потоков CLR
Пул потоков CLR
Заключительной темой нашего обсуждения в этой плаве, посвященной потокам, будет пул потоков CLR. При асинхронном вызове типов с помощью делегатов (посредством метода BeginInvoke()) нельзя сказать, что среда CLR буквально создает совершенно новый поток. В целях эффективности метод BeginInvoke() делегата использует пул (динамическую область) рабочих потоков, поддерживаемых средой выполнения. Чтобы позволить вам взаимодействовать с этим пулом рабочих потоков, пространство имен System.Threading предлагает тип класса ThreadPool.
Чтобы поставить вызов метода в очередь для обработки рабочим потоком из пула, используйте метод ThreadPool.QueueUserWorkItem(). Этот метод является перегруженным, чтобы вдобавок к экземпляру делегата WaitCallback имелась возможность указать необязательный System.Objеct для пользовательских данных состояния.
public sealed class ThreadPool {
…
public static bool QueueUserWorkItem(WaitCallback callBack);
public static bool QueueUserWorkItem(WaitCallback callBack, object state);
}
Делегат WaitCallback может указывать на любой метод, имеющий один параметр System.Object (для представления необязательных данных состояния) и не возвращающий ничего. Если при вызове QueueUserWorkItem() вы не предложите System.Object, среда CLR автоматически передаст значение null. Для иллюстрации методов очереди при использовании пула потоков CLR давайте рассмотрим следующую программу, в которой снова используется тип Printer. Но на этот раз мы не будем создавать массив типов Thread вручную, а свяжем метод PrintNumbers() с членами пула.
class Program {
static void Main(string[] args) {
Console.WriteLine("Старт главного потока. ThreadID = {0}", Thread.CurrentThread.GetHashCode());
Printer p = new Printer();
WaitCallback workItem = new WaitCallback(PrintTheNumbers);
// Очередь из 10 вызовов метода.
for (int i = 0; i ‹ 10; i++) {
ThreadPool.QueueUserWorkItem(workItem, p);
}
Console.WriteLine("Все задачи в очереди");
Console.ReadLine();
}
static void PrintTheNumbers(object state) {
Printer task = (Printer)state;
task.PrintNumbers();
}
}
Здесь вы можете спросить, разве выгодно использовать поддерживаемый средой CLR пул потоков вместо явного создания объектов Thread? Тогда рассмотрите следующие главные преимущества использования пула.
• Пул потоков управляет потоками эффективнее, поскольку минимизируется число потоков, которые приходится создавать, запускать и останавливать.
• При использовании пула потоков вы можете сосредоточиться на своей конкретной задаче, не отвлекаясь на вопросы инфраструктуры потоков приложения.
Однако управление потоками "вручную" может оказаться предпочтительнее, например, в следующих случаях.
• Если требуется создавать приоритетные потоки или устанавливать приоритеты потоков. Потоки, помещенные в пул, всегда являются фоновыми потоками с обычным уровнем приоритета (ThreadPriority.Normal).
• Если требуется создать поток с фиксированным идентификатором, чтобы име-лаcь возможность завершить, приостановить или обнаружить его по имени.
Исходный код. Проект ThreadPoolApp размещён в подкаталоге, соответствующем главе 14.
На этом наш экскурс в многопоточное программирование .NET завершается. Пространство имен System.Threading, без сомнения, определяет множество других типов, кроме тех, которые смогли уместиться в рамках обсуждения данной главы. Но сейчас вы имеете прочный фундамент, который позволит вам расширять свой знания.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Обзор потоков
Обзор потоков Поток (thread) — это независимая единица выполнения в контексте процесса. Программист, разрабатывающий многопоточную программу, должен организовать выполнение потоков таким образом, чтобы это позволило упростить программу и воспользоваться
Идентификация потоков
Идентификация потоков Функции, используемые для получения идентификаторов (ID) и дескрипторов потоков, напоминают те, которые используются для аналогичных целей в случае процессов. • GetCurrentThread — возвращает ненаследуемый псевдодескриптор вызывающего
Состояния потоков
Состояния потоков На рис. 7.4, взятом из [9] (см. также [38], версию, обновленную Соломоном (Solomon) и Руссиновичем (Russinovych)), представлена схема планирования потоков и показаны их возможные состояния. Кроме того, этот рисунок иллюстрирует результаты работы программы. Такие
Состояния потоков
Состояния потоков Несколько раз небрежно упомянув о «выполнении», «готовности» и «блокировке», давайте теперь формализуем эти состояния потока.Выполнение (RUNNING)Состояние выполнения (RUNNING) в QNX/Neutrino означает, что поток активно использует ресурсы процессора. В системе SMP
Пулы потоков
Пулы потоков Другое существенное дополнение в QNX/Neutrino — это понятие пула потоков. Вы будете часто обращать внимание в ваших программах на то обстоятельство, что вам хотелось бы иметь несколько потоков и управлять их поведением в определенных пределах. Например, для
Динамический пул потоков
Динамический пул потоков Динамический пул потоков не является каким-то специфическим механизмом, продиктованным именно микроядерной архитектурой QNX. Это удачная искусственная конструкция, все определения которой размещены в файле <sys/dispatch.h>. Удивительно не то, что в
10.4.2 Анализ потоков
10.4.2 Анализ потоков Ричи упоминает о том, что им была предпринята попытка создания потоков только с процедурами "вывода" или только с процедурами обслуживания. Однако, процедура обслуживания необходима для управления потоками данных, так как модули должны иногда ставить
Создание потоков
Создание потоков Обеспечить многопоточную обработку в приложении Qt достаточно просто: мы только создаем подкласс QThread и переопределяем его функцию run(). Чтобы показать, как это работает, мы начнем с рассмотрения программного кода очень простого подкласса QThread, который
Синхронизация потоков
Синхронизация потоков Обычным требованием для многопоточных приложений является синхронизация работы нескольких потоков. Для этого в Qt предусмотрены следующие классы: QMutex, QReadWriteLock, QSemaphore и QWaitCondition.Класс QMutex обеспечивает такую защиту переменной или участка
13.2. Синхронизация потоков
13.2. Синхронизация потоков Почему необходима синхронизация? Потому что из-за «чередования» операций доступ к переменным и другим сущностям может осуществляться в порядке, который не удается установить путем чтения исходного текста отдельных потоков. Два и более потоков,
Пул потоков CLR
Пул потоков CLR Заключительной темой нашего обсуждения в этой плаве, посвященной потокам, будет пул потоков CLR. При асинхронном вызове типов с помощью делегатов (посредством метода BeginInvoke()) нельзя сказать, что среда CLR буквально создает совершенно новый поток. В целях
2.2.1.3 Планирование потоков
2.2.1.3 Планирование потоков Сервер осведомлен о степени значимости различных потоков и в соответствии с этим назначает для них приоритеты. Например, потоки ввода-вывода получают приоритеты следующим образом: 1. ввод-вывод логической журнализации - наивысший приоритет;2.
ИТЕРАТОРЫ ПОТОКОВ
ИТЕРАТОРЫ ПОТОКОВ Чтобы шаблоны алгоритмов могли работать непосредственно с потоками ввода-вывода, предусмотрены соответствующие шаблонные классы, подобные итераторам. Например,partial_sum_copy(istream_iterator‹double›(cin), istream_iterator‹double›(), ostream_iterator‹double›(cout, " "));читает файл,
4.1.5. Атрибуты потоков
4.1.5. Атрибуты потоков Потоковые атрибуты — это механизм настройки поведения отдельных потоков. Вспомните, что функция pthread_create() принимает аргумент, являющийся указателем на объект атрибутов потока. Если этот указатель равен NULL, поток конфигурируется на основании
Закрытие потоков
Закрытие потоков Функции fclose и fcloseall закрывают поток или потоки. Функция fclose закрывает один заданный поток, fcloseall — все потоки, кроме потоков stdin, stdout, stderr, stdaux, stdprn.Если программа не выполняет закрытия потоков, потоки автоматически закрываются, когда программа завершается