Инструкция утверждения
Инструкция утверждения
Утверждения, рассматриваемые до сих пор - предусловия, постусловия, инварианты, - это основные составляющие метода. Они устанавливают связь между конструкциями ОО-программных систем и теорией АТД, лежащей в основе метода. Инварианты класса, в частности, не могут быть поняты, и даже обсуждаться вне рамок ОО-подхода.
Можно рассматривать и другие возможности использования утверждений. Хотя они менее специфичны для нашего метода, но тоже играют важную роль, и должны быть частью нашей нотации. Наши расширения будут включать инструкцию проверки check, а также конструкции, задающие корректность цикла (инварианты и варианты цикла), рассматриваемые в следующем разделе.
Инструкция check выражает уверенность автора программы, что некоторое свойство всегда выполняется, когда вычисление достигает точки, в которой находится наша инструкция. Синтаксически, инструкция записывается в следующей форме:
check
assertion_clause1
assertion_clause2
...
assertion_clausen
end
Включив эту инструкцию в программный текст, мы говорим, что всякий раз, когда управление достигает этой инструкции, заданное утверждение (предложения утверждения между check и end) должно выполняться.
Это некоторый способ убеждать самого себя, что некоторые свойства выполняются. Более важно, что это позволяет будущим читателям вашего программного текста понять, на каких гипотезах вы основываетесь. Создание ПО требует многочисленных предположений о свойствах объектов системы. Тривиальный, но типичный пример - вызов sqrt(x) предполагает x>=0. Это предположение может быть очевидным из контекста, например, если вызов является частью условного оператора в форме:
if x >= 0 then y := sqrt (x) end
Но проверка может быть чуть менее очевидной, если, например:
x := a^2 + b^2
Инструкция check дает возможность выразить наше предположение о свойствах объектов:
x := a^2 + b^2
... Другие инструкции ...
check
x >= 0
-- Поскольку x был вычислен как сумма квадратов.
end
y := sqrt (x)
Здесь нет конструкции if... then..., защищающей вызов sqrt; но check показывает, что вызов корректен. Хорошей практикой является сопровождать инструкцию комментарием с обоснованием утверждения, как это сделано в примере. Отступы при записи инструкции это тоже часть рекомендованного стиля; они подчеркивают, что при нормальных обстоятельствах инструкция проверки никак не влияет на ход алгоритмического процесса вычислений.
Этот пример типичен для демонстрации того, что наиболее вероятное применение инструкции проверки состоит в добавлении ее, как раз перед вызовом программы, имеющей предусловие. В качестве еще одного примера рассмотрим вызов
s.remove
в точке, где вы точно знаете, что стек s не пуст, поскольку до этого в стек засылалось n элементов, а удалялось m, и вам известно, что n>m. В этом случае нет необходимости защищать вызов: if (not s.empty) then ...; но, если причина корректности вызова непосредственно следует из контекста, то есть смысл напомнить читателю, что "беззащитный" вызов является осознанным решением, а не недосмотром. Этого можно достичь, добавляя проверку:
check not s.empty end
Вариант такой ситуации встречается, когда пишется вызов в форме x.f в полной уверенности, что x/=Void, так что нет необходимости заключать этот вызов в оператор if (x/=Void) then ..., но, тем не менее, существование x не очевидно из контекста. Вернемся к рассмотрению процедур put и remove нашего "защищенного" класса STACK3. Вот текст тела процедуры put:
if full then
error := Overflow
else
check representation /= Void end
representation.put (x); error := 0
end
Здесь читатель может думать, что вызов в else ветви: representation.put(x) потенциально не безопасен, поскольку ему не предшествует тест: (representation /=Void). Но, исследуя текст класса, можно понять, что из условия (full = false) следует положительность capacity, откуда, в свою очередь, следует, что representation не может быть Void. Это важное и не совсем тривиальное свойство, которое должно быть частью инварианта реализации класса. Фактически, с полностью установленным инвариантом реализации следует переписать инструкцию проверки следующим образом:
check
representation_exists: representation /= Void
-- Поскольку предложение representation_exists истинно, когда
-- full ложно, что следует из инварианта реализации.
end
В обычных подходах к конструированию ПО, хотя вызовы и другие операции часто основываются на корректности различных предположений, последние, чаще всего, остаются неявными. Разработчик уверяет себя, что некоторое свойство всегда имеет место в некоторой точке, использует этот анализ при написании кода, но после всего этого, не фиксирует этого в тексте программы, в результате смысл работы потерян. Когда некто, возможно, сам автор, несколькими месяцами позже, захочет разобраться в программе, возможно, с целью ее модификации, ему придется начинать работу с нуля, поскольку все предположения остались в сознании автора. Инструкция check помогает избежать подобных проблем, требуя документирования нетривиальных предположений.
Механизмы утверждений, рассмотренные в этой лекции, помимо того, что они дают преимущества все вещи делать правильно с самого начала, они еще позволяют найти то, что сделано неверно. Используя параметры компиляции можно включить проверку, и сделать инструкцию check реально проверяемой в период выполнения. Если все предположения выполняются, то проверка не оказывает воздействия на процесс вычислений, но, если вы ошиблись, и предположения не выполняются, то в точке их нарушения будет выброшено исключение и процесс остановится. Тем самым появляется возможность быстрого обнаружения содержательных ошибок. Механизм checking - включения проверок будет вкратце рассмотрен в дальнейшем.Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
6.2. Выполнение и невыполнение целевого утверждения
6.2. Выполнение и невыполнение целевого утверждения При нормальном выполнении программы на Прологе целевое утверждение считается согласованным (с базой данных), когда это может быть доказано, и несогласованным в случае, когда доказательства найти не удается. В языке
Утверждения
Утверждения Поскольку первое правило гласит, что отладку нужно проводить всегда, а вывод подразумевает, что не хотелось бы краснеть за недостаточный объем тестирования кода, необходимо научиться создавать защищенные программы. И первым средством из защитного арсенала
5.6. Инструкция while
5.6. Инструкция while Синтаксис инструкции while следующий:while ( условие )инструкцияПока значением условия является true, инструкция выполняется в такой последовательности:* Вычислить условие.* Выполнить инструкцию, если условие истинно.* Если самое первое вычисление условия
Утверждения
Утверждения Часто условия, проверяемые в WHERE, IF и т.д., не являются простыми предикатами, а группой нескольких предикатов, каждый из которых при вычислении делает вклад в вычисление общей истинности. Утверждение может состоять из одного предиката или из нескольких
Утверждения (Assertions)
Утверждения (Assertions) Компоненты абстрактного типа данных имеют формально специфицированные свойства, отражаемые в соответствующих классах.Утверждения - предусловия и постусловия программ класса и инварианты классов - играют эту роль. Утверждения имеют три основных
Утверждения не являются механизмом проверки вводимых данных
Утверждения не являются механизмом проверки вводимых данных Полезно сосредоточиться на некоторых неявно обсуждавшихся свойствах контрактов. Заметьте, контракты описывают только взаимодействие двух программ (программа - программа). Контракты не задают другие виды
Утверждения это не управляющие структуры
Утверждения это не управляющие структуры Еще одно типичное заблуждение - рассматривать утверждения как управляющую структуру, реализующую разбор случаев. К этому моменту должно быть ясно, что не в этом их роль. Если написать программу sqrt, в которой отрицательные
Утверждения как средство для написания корректного ПО
Утверждения как средство для написания корректного ПО Первое использование является чисто методологическим и, вероятно, самым важным. В деталях оно рассматривалось в предыдущих разделах: точные требования к каждой программе, глобальные свойства классов и циклов - все
Включение функций в утверждения
Включение функций в утверждения Булевы выражения не ограничиваются использованием атрибутов и локальных сущностей. Мы уже использовали возможность вызова функций в утверждениях: предусловие для put класса стек было not full, где full - функцияfull: BOOLEAN is-- Is stack full? (Заполнен ли
У11.3 Полные утверждения для стеков
У11.3 Полные утверждения для стеков Покажите, что введение закрытой функции body, возвращающей тело стека, сделает возможным утверждениям класса STACK полностью отражать спецификацию соответствующего АТД. Обсудите теоретическую и практическую значимость такого
У11.6 Утверждения и экспорт
У11.6 Утверждения и экспорт Обсудите использование функций в утверждениях, в частности, введение функции correct_index в предусловия программ put и item. Если добавить эту функцию в класс ARRAY, то какой статус экспорта следует ей
Переопределение и утверждения
Переопределение и утверждения Если клиент класса POLYGON вызывает p.perimeter, то он ожидает получить значение периметра p, определенное спецификацией функции perimeter в определении этого класса. Но теперь, благодаря динамическому связыванию, клиент может вызвать другую программу,
Наследование и утверждения
Наследование и утверждения Следствия красоты базисных идей:[x]. Связь наследования с утверждениями и Проектированием по Контракту.[x]. Глобальная структура наследования, где все классы согласованы.[x]. Замороженные компоненты, для которых не применим принцип
Требовать утверждения внешних подключений
Требовать утверждения внешних подключений Отслеживание внешних подключений — это хорошее начало для восстановления контроля над вашей сетью. Но вам также следует заняться ограничением этих подключений. На самом деле, не каждому желающему действительно нужен такой